그래프를 표현하는 방식
인접 행렬(Adjacency Matrix) | 인접 리스트(Adjacency List) | |
개념 | 2차원 배열로 그래프의 연결 관계를 표현하는 방식 | 리스트로 그래프의 연결 관계를 표현하는 방식 |
장점 | 특정한 두 노드의 연결관계에 대한 정보를 얻는 속도가 빠르다 |
메모리 공간의 낭비가 적다. |
단점 | 모든 관계를 저장하므로 노드의 개수가 많을수록 메모리가 불필요하게 낭비됨. |
특정한 두 노드가 연결되어 있는지에 대한 정보를 얻는 속도가 느리다. |
인접 행렬 코드
INF = 999999999 # 무한의 비용 선언
# 2차원 리스트를 이용해 인접 행렬 표현
graph = [
[0, 7, 5],
[7, 0, INF],
[5, INF, 0]
]
print(graph)
인접 리스트 코드
# 행(Row)이 3개인 2차원 리스트로 인접 리스트 표현
graph = [[] for _ in range(3)]
# 노드 0에 연결된 노드 정보 저장(노드, 거리)
graph[0].append((1, 7))
graph[0].append((2, 5))
# 노드 1에 연결된 노드 정보 저장(노드, 거리)
graph[1].append((0, 7))
# 노드 2에 연결된 노드 정보 저장(노드, 거리)
graph[2].append((0, 5))
print(graph)
DFS (Depth-First Search)
깊이 우선 탐색, 그래프에서 깊은 부분을 우선적으로 탐색하는 알고리즘
동작 과정
1. 탐색 시작 노드를 스택에 삽입하고 방문 처리를 한다.
2. 스택의 최상단 노드에 방문하지 않은 인접 노드가 있으면 그 인접 노드를 스택에 넣고 방문 처리를 한다.
방문하지 않은 인접 노드가 없으면 스택에서 최상단 노드를 꺼낸다.
3. 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.
<참고 코드>
이것이 취업을 위한 코딩 테스트다 with 파이썬 - 5.8py
https://github.com/ndb796/python-for-coding-test/blob/master/5/8.py
# DFS 함수 정의
def dfs(graph, v, visited):
# 현재 노드를 방문 처리
visited[v] = True
print(v, end=' ')
# 현재 노드와 연결된 다른 노드를 재귀적으로 방문
for i in graph[v]:
if not visited[i]:
dfs(graph, i, visited)
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 DFS 함수 호출
dfs(graph, 1, visited)
BFS (Breadth-First Search)
너비 우선 탐색, 가까운 노드부터 탐색하는 알고리즘
동작 과정
1. 탐색 시작 노드를 큐에 삽입하고 방문 처리를 한다.
2. 큐에 노드를 꺼내 해당 노드의 인접 노드 중에서 방문하지 않은 노드를 모두 큐에 삽입하고 방문 처리를 한다.
3. 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.
<참고 코드>
이것이 취업을 위한 코딩 테스트다 with 파이썬 - 5.9py
https://github.com/ndb796/python-for-coding-test/blob/master/5/9.py
from collections import deque
# BFS 함수 정의
def bfs(graph, start, visited):
# 큐(Queue) 구현을 위해 deque 라이브러리 사용
queue = deque([start])
# 현재 노드를 방문 처리
visited[start] = True
# 큐가 빌 때까지 반복
while queue:
# 큐에서 하나의 원소를 뽑아 출력
v = queue.popleft()
print(v, end=' ')
# 해당 원소와 연결된, 아직 방문하지 않은 원소들을 큐에 삽입
for i in graph[v]:
if not visited[i]:
queue.append(i)
visited[i] = True
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 BFS 함수 호출
bfs(graph, 1, visited)
'Problem Solving > 이론' 카테고리의 다른 글
Python:: 정렬 - 힙 정렬 (0) | 2022.03.15 |
---|---|
Python:: 정렬 - 퀵 정렬 (0) | 2022.03.15 |
Python:: 정렬 - 삽입 정렬 (0) | 2022.03.15 |
Python:: 정렬 - 선택 정렬 (1) | 2022.03.15 |
Python:: 큐 (0) | 2022.02.17 |